
Updating a Turning Center Error Model 
By 

Singular Value Decomposition 
 
 

David E. Gilsinn 
Mathematical and Computational Sciences Division 

 
Herbert T. Bandy 

Manufacturing Metrology Division 
 

U.S. Department of Commerce 
Technology Administration 

National Institute of Standards and Technology 
Gaithersburg, MD  20899 

 
 

Alice V. Ling 
AFRL/DEX 

3550 Aberdeen Ave. SE 
Kirtland AFB, NM 87117-5776 

 
 
 

NISTIR 6722 
 

 1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Certain commercial software products are identified in this paper in order to adequately 
specify the computational procedures. Such identification does not imply 
recommendation or endorsement by the National Institute of Standards and Technology, 
nor does it imply that the software products identified are necessarily the best available 
for the purpose. 
 



 
 
 
 
 
 

Abstract 
 
The precision of manufacturing using machine tools depends on the accuracy of the 
relative position of the cutting tool with respect to the workpiece.  Kinematic modeling of 
machine tools is used to describe this relative position.  This motion can be modeled by 
homogeneous coordinate transformation matrices composed of both rotational elements 
as well as positional offset elements of the associated coordinates. The rotation and 
translation components of the homogeneous transformations are considered to be 
functions of nominal tool position and machine temperatures. In general these functions 
are low order polynomials in terms of position and temperatures. The coefficients are 
usually calculated with least squares curve fitting techniques. The data for these fits are 
obtained by measuring actual coordinate positions and temperatures on the machine tool 
based upon desired programmed nominal coordinates.  The process of measuring and 
modeling the errors of machine axis positions as functions of nominal positions and 
temperatures is referred to as machine tool characterization. The geometric-thermal 
models developed through machine tool characterization may not fully predict the errors 
encountered by a machine tool during machining. The data from machine 
characterization usually provides the structure to derive the basic form of the equations 
used to model the various error components used in the homogeneous matrices. This 
process of model updating involves determining the residual systematic errors of the 
machine tool and applying an algorithm to update the geometric-thermal model 
coefficients. The updating algorithm described in this report begins with adding 
perturbation terms to the characterization coefficients of the geometric-thermal model. 
These coefficients are estimated by an “inverse” process, using residual systematic errors, 
determined from part measurements on a coordinate measuring machine.  The main tool 
used in identifying the perturbation terms is called a generalized or pseudo inverse 
matrix. This matrix is applied to the residual error vector to obtain a “best” approximate 
solution to the least squares problem. 
 
Key Words: generalized inverse; geometric-thermal model; least squares; machine tool 
model; post-process analysis; pseudo inverse 
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0.0 Introduction  
 
The precision of manufacturing using machine tools depends on the accuracy of the 
relative position of the cutting tool with respect to the workpiece.  Kinematic modeling of 
machine tools is used to describe this relative position.  In this paper a machine tool is 
assumed to be decomposable into basic rigid components.  The motions of these 
components can be related to each other by means of relative motions of coordinate 
systems associated with each component.  The machine tool is assumed to have a 
reference axis system (arbitrarily assigned by the user).  From this axis system two chains 
of linked coordinates emanate.  One connects the reference axis system with the tool 
point and the other with the workpiece.  The motion of a coordinate system relative to 
another can be modeled by a homogeneous coordinate transformation matrix.  This 
matrix is composed of both rotational elements as well as positional offset elements of 
the associated coordinates.  The significance of homogeneous matrices is that a 
coordinate system defining the motion of a machine component can be linked to the 
reference coordinate system by a sequence of matrix multiplications.  The errors in the 
location of the tool with respect to the workpiece are related to the relative errors in the 
locations of the coordinate frames in the axis chains.  The rotation and translation 
components of the homogeneous matrices defining the relative motions of the linked 
coordinate systems are considered to be functions of nominal tool position and machine 
temperatures.  In general these functions are low order polynomials in terms of position 
and temperatures.  The coefficients are usually calculated with least squares curve fitting 
techniques.  The data for these fits are obtained by measuring actual coordinate positions 
and temperatures on the machine tool based upon desired (CNC programmed) nominal 
coordinates.  Modeling of machine tools in this manner has been used by many 
researchers, see for example references [1] to [11]. 
 
The process of measuring and modeling the errors of machine axis positions as functions 
of nominal positions and temperatures is referred to as machine tool characterization.  
One of the principal applications of kinematic modeling and machine tool 
characterization is to develop a geometric-thermal model that relates the machine tool 
error to the geometric imperfection and temperature variation in the machine tool.  This 
model can also be used for real-time correction of machine tool errors as functions of 
nominal position and machine tool temperature profile.  References [3] and [12] through 
[15] describe several machine tool characterization experiments. 
 
The geometric-thermal models developed through machine tool characterization may not 
fully predict the errors encountered by a machine tool during machining.  This is because 
the characterization is usually based on measurements that can be taken only when the 
machine tool is not operating.  Many factors, such as coolant spray, load-induced 
deformation, and long term machine wear, combine to make such models ineffective.  
The data from machine characterization usually provides the structure to derive the basic 
form of the equations used to model the various error components used in the 
homogeneous matrices.  The models developed through machine characterization can be 
considered as first order models that require coefficient adjustment and periodic 
coefficient updating in order to capture slowly changing process conditions in a 
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production environment.  This process of model updating involves determining the 
residual systematic errors of the machine tool and applying an algorithm to update the 
geometric-thermal model coefficients.  
 
The updating algorithm described in this report begins with adding perturbation terms to 
the characterization coefficients of the geometric-thermal model.  These coefficients are 
estimated by an “inverse” process, using residual systematic errors, determined from part 
measurements on a coordinate measuring machine (CMM).  They are then combined 
with the existing model coefficients to compute the updated model coefficients.  The 
“inverse” process used is a form of least-squares estimation that takes into account the 
possibility that the equations that arise in the usual least squares process may not be 
uniquely solvable and standard least squares procedures may fail. 
 
A discussion of one implementation of Post-Process analysis can be found in [20] 
through [23] although few details of the computational inversion process are given.  That 
implementation relies on inversion of data acquired on individual features.  The current 
algorithm significantly differs from that implementation in that it uses data obtained from 
measurements of an entire part to determine residual errors rather than restricting the 
inversion process to a feature at a time.  Using data from an entire part provides an 
averaged set of coefficients applicable to all features on the part.  Inverting, based on 
fitting separate feature measurements, adjusts the same coefficients in the geometric-
thermal model differently and does not provide a single consistent adjustment of all 
parameters that apply to the entire part.  Once all parameters are uniformly adjusted, 
errors on individual features can easily be determined. 
 
The main tool used in identifying the perturbation terms is called a generalized or pseudo 
inverse matrix. This matrix is applied to the residual error vector to obtain a “best” 
approximate solution to the least squares problem.  The term “best” will be described in 
Appendix E.  The essential tool in forming the generalized inverse is a matrix theorem 
which proves that any given matrix can be decomposed into an associated diagonal 
matrix, some of whose elements might be zero.  The diagonal elements are called 
singular values and indicate how many perturbation coefficients are significant.  A full 
discussion of the numerical aspects related to the singular value decomposition and 
pseudo inverse generation are given in Appendix E and in reference [24]. 
 
This report describes the algorithmic details of the post-process analysis procedure and 
presents an application to one part produced on a turning center.  The authors are aware 
that the application of the method to one part and, in fact, a reasonably simple part does 
not constitute an adequate test of the procedure. However, budgetary constraints at the 
time of the study limited the current work. The authors, however, felt that it was 
worthwhile publishing the current results as a stimulus for further research. Future testing 
of the algorithm is planned as budgets allow.  These new tests will highlight various parts 
designed to utilize the extent of the workspace and temperature ranges experienced by the 
turning center.  The object of the tests is to determine whether there is a fixed set of 
coefficients for the geometric-thermal model that apply to the entire workspace or 
whether the workspace needs to be divided into sub-areas with separate sets of 
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coefficients applicable to each sub-area. They will also study the robustness of the 
compensated parameters to perturbations of the data points upon which the model 
updates were based. 
 
 
The report is divided into six sections.  Section 2 presents the error equations for the 
machine tool (in this report a turning center was used).  Section 3 describes the 
development of the perturbation equations.  Section 3 describes the formation of the 
system matrix.  Section 4 describes the application of the method to estimate the 
perturbed machine tool model coefficients by using a machined part on the turning 
center.  Section 5 concludes with a discussion of the results. Section 6 includes the 
references. 
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1.0 Kinematic Model for a Turning Center 
 
The turning center that is modeled in this section is shown in Figure 1.  Although 40 
thermocouples have been identified numerically from 0 to 39 (see Appendix A.1, Table 
A1), only 36 were actually used to measure temperatures since 3 through 6 were not 
attached to the machine tool during testing.  This figure also shows the locations of 
various thermocouples used to model the individual component errors that are included in 
the complete kinematic model. 
 
 

39

 
 

Figure 1: Turning Center with Thermocouple Locations 

 
The formal development of the geometric-thermal error equations from the kinematic 
model is given in Appendix A.1 and only the results are given below.  The definitions of 
the terms in the model are also given in Appendix A.1.  The methods used to develop 
these equations are well known and can be found in [3-5]. The coordinate system for the 
turning center is shown in Figure 1.  
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The modeled displacement errors of the tool from the workpiece are given by: 
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These equations give the generic error formulas for a turning center with its absolute 
reference axis system and machine coordinate system assumed aligned at “cold start” in 
the “home” position.  The constants, , are relative o
of the machine component coordinate systems from the absolute reference axis system. 
Note that 33 , ZX  are found to be non-significant and thus do not appear in equation 
The significant offset constants are given in Table A.2 of Appendix A.1.  Many of the 
components are deemed non-significant on a turning center (since the turning cente
2-axis machine) so that only nine errors are included in the final model for the turning 
center to yield the error equations 
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Appendix A.2 lists the program used to symbolically generate equations (1) and (2) using 
the symbol manipulator program MACSYMA.  Note that the final error compensation 
model for the turning center requires only two coordinate system offsets.  These offsets 
are given by 
 
 

),( 44 XZ  - Tool offset from the turret. 
),( 22 XZ  - Cross slide offset from the carriage axis. 
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The notation T represents the vector of all thermocouple temperatures given by 
 ).,,( 390 TTT =

 
The following error components on the turning center are the characterization equations 
and the coefficients used in the current study are given in Appendix B.1.  The rotational 
displacement of all points on the turning center have a yaw component that is a function 
of temperature  
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The X-axis displacement is  
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The Z displacement is  
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The temperature of thermocouple 19 is taken at the initial temperature before the machine 
starts to warm up. 
 
The squareness of the X-axis with respect to the spindle axis is  
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2.0 Forming the Perturbation Equations 
 
In order to adjust the coefficients of (2) we form a set of perturbed equations.  These 
equations are built up from perturbing the coefficients of the component error equations.  
These are 
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Note that the perturbations are structured in such a way that the characterization 
coefficients are carried along into the difference terms.  This was done in order to carry 
the influence of the characterization coefficients along during the fitting process.  Now, 
to obtain the perturbation terms subtract equations (4) through (12) from (15) to get 
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The perturbation form of the kinematic model becomes 
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In order to relate the perturbed residual position errors in (17) to the perturbed error 
component coefficients substitute (16) into (17).  Now, the problem becomes one of 
determining the perturbation coefficients from the observed (measured) residual error 
vector   To do this we create a system of equations of the following form )).(),(( yx EE ∆∆
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where the  terms will be defined below. ijijij dzxDzxC ),,(),,(
 
When (16) is substituted into (17) the unknown coefficients are ijA∆ .  From the 
numerical point of view it will be necessary later to scale these unknowns in equation 
(16) in order to control the magnitude of the elements in the resulting matrix that arises in 
the fitting process.  The scaled unknowns are the  coefficients in (18).  In order to 
construct them we will introduce a scaling array 
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where  are new perturbation coefficients.  The scaling is necessary in order to 
guarantee that terms in the fitting process matrix are all approximately the same order of 
magnitude and are not too large.  The scaling array is determined in such a way that the 
maximum value in each column of the matrix J is one.  This is done for each column by 
first finding the maximum of the absolute values of the elements in each column.  If the 
maximum is zero then the scale for that column is set to one.  Otherwise the scale is set to 
the reciprocal of the maximum.  For a discussion of scaling and its application to 
problems of inversion see [25].  

ijd

 
Returning to the substitution of (16) into (17) we further introduce (18) into (17) and 
rearrange terms.  Now, define the following coefficients 
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and 
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By substituting equations (20) and (21) into (17) we get (18), which is the system we 
sought to form.  System (18) itself cannot be directly solved for the unknowns, but if we 
introduce the residual errors measured at a set of spatial points on the part then it will be 
feasible to solve for the unknowns in a least squares manner.  In the next section we form 
the system of equations needed to solve for the unknowns. There are 35 unknowns, each 
associated with a column of the system matrix. However, not all of the coefficients 
appear in both (20) and (21) simultaneously. These missing coefficients lead to blocks of 
zeroes in the matrix defined in the next section. 
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3.0 Forming and Solving the System Matrix 
 
We form the system of equations to solve for the unknown  in equation (18) as 
follows.  Let there be n points on the part at which residual errors are to be computed 
from CMM measurements.  Denote the points by for i = 1, …, n.  Then set 
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 (22) 

 
In  to  the value of  is computed as 91C 94C z∆ inin zzz −−+ −=∆ 1  for 1,,1 −= ni . For 

 ., 12 zzzni −=∆=
 
For i = n+1,…,2n the matrix elements are written as 
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In  and  the value of  is computed as 81D 82D x∆ inin xxx −−+ −=∆ 212  for 

. For 12,,1 −+= nni .,2 12 xxxni −=∆=  
 
Finally, for ease of notation, set 
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and 
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We now have the notation set up to form the system 
 

VJU =  (26) 
 
where  is a matrix with 2n rows, since there are n probe points each with an x and a z 
error, by 35 columns, one for each scaled perturbation coefficient.  Note that if any 
residual error in equation (24) is zero then the associated row of J is set to zero. 

J

 
If J were a square matrix and non singular then the solution would be simply 
 

VJU 1−= , (27) 
 
but in general J is an overdetermined system with more rows than columns.  Furthermore, 
since many of the columns might be dependent on each other a standard least squares 
approach will likely fail.  For this reason we apply a matrix called the generalized or 
pseudo inverse and compute 
 

.VJU +=   (28) 
 
The details involved with computing the pseudo inverse are given in Appendix E and in 
[24]. 
 
Once U has been computed the  coefficients can be determined from (19) and the 
updated coefficients, given by 

ijA∆

 
)1( ijij AA ∆+ .  (29) 
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4.0 Application 
 
In this section an application of the inversion process described in the previous sections 
will be given.  The part shown in Figure 2 was machined.  It consisted of two concentric 
cylinders.  The smaller cylinder has a nominal diameter of 50.8 mm (2 in), and the larger 
one has a nominal diameter of 152.4 mm (6 in).  To compute the process errors, the part 
was probed with a touch trigger probe at 35 points while still secured on the machine 
tool.  For a discussion of on-machine probing see Bandy and Gilsinn [17]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to use on-machine touch trigger probe readings in determining machine tool 
errors, various coordinate systems have to be linked.  For example, the turning center 
error models are based on calibrated error component equations that describe error 
motions at points in the reference coordinate system of the turning center.  When parts 
are turned, however, points on the part are identified relative to a part coordinate system.  
Therefore the part coordinate zero needs to be located relative to the turning center 
reference coordinate system.  In Figure 2 the part coordinate zero is set as the center point 
of the top face of the small cylinder.  The positive Z-axis is taken vertically and the 
positive X-axis is taken to the right. In order to link the part zero point to the turning 
center reference coordinate system two sets of data are read.  First the probe offsets in the 
X and Z directions are obtained from a database file.  These offsets are distances from a 
point on the turning center tool turret called the tool setting point.  As the turret moves 

 
 
       Figure 2: Two Cylinder Turned Part 
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the location of the tool setting point with respect to the reference coordinate system can 
be queried so that when the touch trigger probe is brought to the part zero point the 
location of the part zero relative to the reference coordinate system can be computed.  As 
a result any part coordinate can be identified with a reference coordinate.  Therefore, 
when points
points can th
reference co
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 on a part are identified by their part coordinates, error estimates at these 
en be computed by identifying the part coordinates with their machine 
ordinates.  For a further discussion of computing machine offsets see 
. 

e measuring machine (CMM) is used to measure the part in Figure 2 at the
ordinates that were probed on the turning center.  This is done by 

 a working reference plane on the CMM along the top surface of the small

 setting the reference plane zero at the same point as the part zero is set on 
enter.  Then, the 35 points probed on the turning center are probed at the 
nates on the CMM.  Error measurements are made normal to the surface 
ed.  Realizing that there is statistical variation in the measurements, the 

grammed to measure the 35 points along the surface at 8 angles around the 
e 2.  The error measurements at these equally spaced angles are then 

on of the new coefficients for the component error equations in the turning 
model proceeds by: 1) reading the old coefficients from a database, 2) 
hermocouple temperatures on the turning center when the part was 
d, 3) reading the initial turning center temperatures before machining, 4) 
ominal points probed on the part and the averaged CMM error 
ts.  The turning center errors are computed by the methods of Appendix D 
m matrix J is formed as in Section 4.  Next, the predicted turning center 
mputed using the old coefficients and the difference between the CMM 
rors and the predicted turning center errors, as in equation (D5).  This 
 residual errors at the probed points.  The pseudoinverse of the system 
is applied to the residual errors to produce the scaled correction terms .  
ent correction terms are computed by rescaling the terms in (19).  Finally the 
ents are computed by adding one to the rescaled correction terms and then 
by the old coefficients as in equation (29). 

ijd

ed results are shown below in figures 3 and 4.  Of the 35 points chosen on the 
nalysis, eight were selected on the top surface of the small cylinder and nine 
lected on the small cylinder side, the large cylinder top and the large cylinder 
 3 shows the results of plotting the averaged CMM error measurements in the 
along with the predicted machine errors using the updated coefficients.  The 
re the predicted errors and the dashed lines are the averaged CMM error 
ts at the points along the small cylinder (points 9 to 17) and along the large 
ints 27 to 35).  Figure 4 shows a similar plot, but for the errors in the Z 
he errors along the top of the small cylinder are plotted for points 1 through 8 
ong the top of the large cylinder are for points 18 through 26.  The maximum, 
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mean and the standard deviation of the differences between the measured and predicted 
errors are given in Table 1.  The new coefficients are given in Appendix B2. 
 
 
 

 Error Difference (mm)  
 Maximum Mean Standard Deviation

X Direction 0.0041 0.0014 0.0010 
Z Direction 0.0025 0.0008 0.0007 

 
Table 1: This shows the Maximum, Mean and Standard Deviations of the 

differences in the errors plotted in figures 3 and 4. 
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Figure 3: Comparing the Measured Turning Center Errors (dashes) with the 
Predicted Errors (solid) based on Updated Turning Center Model in the X 

Direction. 
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Figure 4: Comparing the Measured Turning Center Errors (dashes) with the 
Predicted Errors (solid) based on Updated Turning Center Model in the Z 

Direction. 
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5.0 Discussion 
 
Machine tool error models are often developed and calibrated by using such techniques 
as laser interferometry and capacitance gauges to measure component errors such as scale 
and straightness errors.  Since a machine tool’s various parts such as bearings cannot in 
general be warmed up to functional conditions experienced during machining, another 
method must be developed to modify the calibrated machine error models to represent 
errors experienced under cutting conditions.  This report proposes a method that can be 
used to modify the coefficients of a calibrated model so that it can be used during 
machining operations to compensate for machine tool errors. 
 
The method employed here is a modified least squares technique that takes into account 
the fact that the normal equations generated during the least squares process may not be 
solvable in the usual sense.  For that reason a generalized inverse is applied to the normal 
equations to generate the best solution in the sense of Appendix E.  This is a well known 
tool for solving least squares problems and a thorough discussion can be found in [24]. 
 
The results shown in Table 1 and Figures 3 and 4 clearly show that the method produces 
an adjusted error model that accurately reproduces the measured data used to update the 
error model for the turning center used during the study.  Appendices B1 and B2 show 
that the method significantly changes the coefficients to the basic form of the model. A 
reader should recognize that the model fits are adequate for the range of the data. They do 
not guarantee that the updated model could be used to compensate errors on turned parts 
dissimilar to the one used in the study. Further research must address the question of how 
to extend the model adjustment procedure described in this report to hold for families of 
similar parts or for other classes of parts. Further studies will also emphasize 
manufacturing parts under varying temperature conditions.  Parts will also be designed to 
test different features placed throughout the workspace 
 
Since the intent of the machine tool error model is to be used for real time error 
compensation no attempt is made to fit model forms beyond cubic spatial terms.  This is 
because past experience has shown that cubic polynomials can be evaluated and their 
results passed to a machine tool to correct tool position within the real time constraints of 
the cutting process. Furthermore, higher order polynomials can introduce unwanted 
oscillations between fitting points. 
 
Again the authors emphasize that this is not a report that claims that using singular value 
decomposition is the only tool for modifying or developing a machine tool error 
compensation model. However, given the initial error component model forms on which 
to base the turning center error compensation model, the authors felt that singular value 
decomposition was a sufficiently robust tool to use for the current study. 
 
. 
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APPENDIX A  
 

A.1 Developing the Kinematic Model for a Turning Center 
 
In this appendix the homogeneous transformations for the coordinate systems modeling 
the turning center components along with the final error model will be given.  For a 
detailed discussion of the theoretical development of the transformations see [3-5].  The 
turning center that is modeled in this section is shown in Section 2, Figure 1.  Table A1 
lists thermocouples along with their position descriptors. 
 
The first step in the model development is the establishment of a reference coordinate 
system.  On the turning center this will be taken as the or absolute coordinate system, the 
origin of which is located at the farthest travel to the left along the z-axis and the farthest 
travel vertically alone the x-axis.  For the turning center, modeled in this study, the 
absolute coordinate system origin aligns itself with a point that is located at the upper 
right rear of the tool slot as one faces the turret, when the turret is brought to Home 
position.  This point is also called the tool setting point. 
 
Let  be the offset of the origin of the z-slide coordinate system from the 
reference coordinate system.  Upper case letters are constants representing coordinate 
system offsets from each other, whereas lower case axis letters represent variable values.  
Thus the origin of the z-slide axis system is set Z

),( 11 XZ

1 units along the z-axis from the origin 
of the reference coordinate system and X1 units along the x-axis from the origin of the 
reference coordinate system.  The motion of the z-slide coordinate system (also called the 
carriage coordinate system) relative to the machine coordinate system is described by the 
homogeneous transformation 
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 (A.1) 

 
 

),( Tzzε  is the roll error of the carriage given z motion as a function of the 
temperature state, T, of the machine. 

),( Tzxε  is the pitch error of the carriage given z motion and temperature 
state T. 

),( Tzyε  is the yaw error of the carriage given z motion and temperature 
state T. 

),( Tzxδ  is the x-displacement error given z motion and temperature state T. 
),( Tzyδ  is the y-displacement error given z motion and temperature state T. 
),( Tzzδ  is the z scale error given z motion and temperature state T. 
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zTTzTz pxx ∆+= *)(),('),( αδδ   (A.2) 
 
where 

),(' Tzxδ  is the x-straightness error of the carriage given z motion and 
temperature state T. 

)(Tpα  is the parallelism error between the z-motion and axis average line 
of the spindle given temperature state T. 

z∆  is the incremental z motion. 
T  temperature state of the machine and is taken to be the vector  

),,( 390 TTT = , of thermocouple temperatures. 
 
Let  be the offset of the origin of the x-slide axis system (also called the cross 
slide) from the origin of the z-slide axis system then the transformation representing the 
motion of the x-slide motion relative to the z-slide is given by 

),( 22 XZ

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−
−

++−

=

1000
),(1),(),(

),(),(1),(
),(),(),(1

2

2

TxZTxTx
TxTxTx

TxxXTxTx

T
zxy

yxz

xyz

x
z

δεε
δεε

δεε

 (A.3) 
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                                Thermocouple Locations 

Number Location 
0 Bottom of X-Scale (Glass) 
1 Top of X-Scale 
2 Coolant Tank 
3 Not Used 
4 Not Used 
5 Not Used 
6 Not Used 
7 Right of Z-Scale 
8 Right Center of Z-Scale 
9 Left Center of Z-Scale 
10 Left of Z-Scale 
11 Top of X-Way 
12 Bottom of X-Way 
13 Top of X-Head 
14 Bottom of X-Head 
15 Bottom Left of Z-Slide 
16 Top Left of Z-Slide 
17 Bottom Right of Z-Slide 
18 Top Right of Z-Slide 
19 Hydraulic Tank 
20 Left End of Lower Z-Way 
21 Left End of Upper Z-Way 
22 Right End of Lower Z-Way 
23 Right End of Upper Z-Way 
24 Lower Front of Spindle Head 
25 Lower Rear of Spindle Head 
26 Upper Front of Spindle Head 
27 Upper Rear of Spindle Head 
28 Left of Top of Spindle Head 
29 Middle of Top of Spindle Head 
30 Right of Top of Spindle Head 
31 Bottom Left of Bed 
32 Top Left of Bed 
33 Bottom Right of Bed 
34 Top Right of Bed 
35 Near X-Drive Motor Shaft Bearing 
36 Left Z-Ballscrew Bearing 
37 Right Z-Ballscrew 
38 X-Ballscrew Housing 
39 Z-Ballscrew Nut 

 
                        Table A1: Thermocouple Locations on the Turning Center. 
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where 
),( Txxε  is the roll error of the cross slide with x motion at temperature state 

T. 
),( Txzε  is the pitch error of the cross slide with x motion at temperature 

state T. 
),( Txyε  is the yaw error of the cross slide with x motion at temperature 

state T. 
),( Txyδ  is the y displacement of the cross slide with x motion at 

temperature state T. 
),( Txxδ  is the x scale error of the cross slide with x motion at temperature 

state T. 
),( Txzδ  is the z displacement error of the cross slide with x motion at 

temperature state T. 
 

xTTxTx ozz ∆+= *)(),('),( αδδ   (A.4) 
 
where 

),(' Txzδ  is the z straightness of the cross slide with x motion at temperature 
state T. 

)(Toα  is the orthogonality error between the x motion and the axis 
average line of the spindle at temperature state T. 

x∆  is the incremental x motion. 
 
 
Let the turret and x-slide coordinates overlay so that 
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where, due to misalignments of the turret on its rotational axis, 
 

),(),,(),,( TtTtTt zyx εεε  are the rotational errors in station-to-station motion of 
the tool turret at temperature state T. 

),(),,(),,( TtTtTt zyx δδδ  are the translation errors in station-to-station motion of 
the tool turret at temperature state T. 
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A turret on the lathe has the capability of holding, for example, various cutters, tools and 
on-machine measurement devices.  Station-to-station motion here refers to rotation of the 
turret from one cutter or tool position on the turret to another. 
 
Let  be the offset of the cutter coordinate system from the turret coordinate 
system.  Since the cutting tool coordinate frame is assigned to the tool tip (a point), the 
rotation errors have no effect.  The errors involved are due in part to the fact that an 
actual tool is in error from its nominal dimension and in part to thermal effects during the 
cutting operations.  The cutting tool error matrix relative to the turret is given by 
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where 

),,(),,(),,( TcTcTc zyx δδδ  are the incremental tool dimension changes in the x, y 
and z directions at temperature state T. 

 
Let  be the offset of the spindle coordinate system from the machine coordinate 
system.  In the generic turning center model, the spindle has unrestricted rotation about 
the z axis so that 

),( 55 XZ

0),( =Tszε .  The spindle errors are due to either axis of rotation errors 
of the spindle or errors resulting from misalignments of the chuck.  The spindle error 
matrix relative to the machine coordinate system is given by 
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where 

),( Tsxε  is the tilt of the spindle in the non-sensitive direction, i.e. yaw 
motion about the x axis, at temperature state T. 

),( Tsyε  is the tilt of the spindle in the sensitive direction or a pitch motion 
about the y axis at temperature state T. 

),( Tsxδ  is the translations of the spindle in the sensitive or x direction at 
temperature state T. 

),( Tsyδ  is the translations of the spindle in the non-sensitive or y direction 
at temperature state T. 

),( Tszδ  is the z-axial motion of the spindle at temperature state T. 
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Let  be the desired point on the work piece to which the tool is to be brought.  
Finally, for the workpiece assume no rotational errors. The workpiece error 
transformation is given by: 
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where 

),(),,(),,( TwTwTw zyx δδδ  are the changes of the coordinates of the point on the 
workpiece to which the tool is to be applied in the x, y and z directions at 
temperature state T. 

 
To determine  at the work point one equates the ideal transformation (i.e. 
without errors) products of the two chains 
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The offsets are given in Table A.2 for the turret lathe.  The coordinate systems are not 
placed arbitrarily but are placed on the machine tool components in such a way that they 
are related to the measurement characteristics of the metrology devices used to calibrate 
the error components.  
 

 X Z 
1 -148 -43 
2 30 -26 
3 0 0 
4 -35 30 
5 -386 0 

 
Table A.2: Coordinate System Offsets 
in mm. 
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The resulting generic error matrix can be computed as 
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A symbolic manipulation package, such as MACSYMA, can be used to generate the 
inverse matrices and compute the final product E (see Appendix A.2.).  The final 
displacement errors of the tool from the workpiece are given by: 
 

),(),(),(),(
),(),(*),()(*)),(),((

*)),(),(),(),((*),(

),(),(),(),(),(),()(*),(
*)),(),(),(()(*),(*)),(),((

*)),(),(),(),((*),(

),(),(),(),(

),(),()(*),(*)),(),((

*)),(),(),(),((*),(

12

45

2

412

45

12

45

TcTsTtTw
TxTzXTsxXTsTz

XTsTtTxTzXTsE

TcTsTtTwTxTzxXTz
XTtTxTzzZTsZTsTz

ZTsTtTxTzZTsE

TcTsTtTw

TxTzzZTsZTsTz

ZTsTtTxTzZTsE

zzzz

zzyyy

yyyyyz

yyyyyyz

zzzxxx

xxxxxy

xxxx

xxyyy

yyyyyx

δδδδ

δδεεε

εεεεε

δδδδδδε
εεεεεε

εεεεε

δδδδ

δδεεε

εεεεε

+−+−

+++++−+

+−−−+−=

+−+−++++
++++++−+

+−−−+−=

+−+−

+++−−+

−+++=

 (A.12) 

 
These equations give the generic error formulas for a turning center with its absolute 
reference coordinate system and the tool setting point assumed aligned at “cold start” in 
the “home” position.  
 
There are only two equations in the final model.  Errors in the y direction are not included 
since they are in the non-sensitive direction.  The nonsensitive direction in turning centers 
is the direction perpendicular to the plane in which the two machine slides move.  The 
only error components included were those found to be significant and not in 
nonsensitive directions.  Only seven errors are included in the final model for the turning 
center to yield the error equations 
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The MACSYMA script used to generate these equations is given in Appendix A.2. 
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A.2 MACSYMA Script for Kinematic Model Generation 
 
This appendix contains the listing of a command script for the symbol manipulator 
language MACSYMA.  The script can be loaded into MACSYMA by using the BATCH 
command.  Note that the small variable arithmetic is taken care of by observing that the 
result of the product of two terms with small order variables is just the linearization of the 
final result with respect to all of the small variables.  This can be accomplished by taking 
the Taylor series of the product up to the first order terms only.  The final result of this 
script is given by equation (A.13). 
 
/* Construct the list of error components */ 
list1:[ezz,eyz,dxz,exz,dyz,dzz,ezx,eyx,dxx,exx,dyx,dzx]$ 
list2:[ezt,eyt,dxt,ext,dyt,dzt,dxc,dyc,dzc]$ 
list3:[eys,dxs,exs,dys,dzs,dxw,dyw,dzw,ap,ao]$ 
list:append(list1,list2,list3)$ 
/* Declare Final Error Array */ 
array(Err,3)$ 
/* Initialize all transformation arrays to 0 */ 
array(ioTz, 4,4)$ 
array(izTx, 4,4)$ 
array(ixTt, 4,4)$ 
array(itTc, 4,4)$ 
array(ioTs, 4,4)$ 
array(isTw, 4,4)$ 
array(eoTz, 4,4)$ 
array(ezTx, 4,4)$ 
array(exTt, 4,4)$ 
array(etTc, 4,4)$ 
array(eoTs, 4,4)$ 
array(esTw, 4,4)$ 
for i:1 thru 4 do 
 for j:1 thru 4 do 
  (ioTz[i,j] : 0.0, 
  izTx[i,j] : 0.0, 
  ixTt[i,j] : 0.0, 
  itTc[i,j] : 0.0, 
  ioTs[i,j] : 0.0, 
  isTw[i,j] : 0.0, 
  eoTz[i,j] : 0.0, 
  ezTx[i,j] : 0.0, 
  exTt[i,j] : 0.0, 
  etTc[i,j] : 0.0, 
  eoTs[i,j] : 0.0, 
  esTw[i,j] : 0.0)$ 
/* Initialize the ideal transformation components */ 
ioTz[1,1] : 1$ 

 37



ioTz[2,2] : 1$ 
ioTz[3,3] : 1$ 
ioTz[4,4] : 1$ 
ioTz[1,4] : X1$ 
ioTz[3,4] : Z1+z$ 
izTx[1,1] : 1$ 
izTx[2,2] : 1$ 
izTx[3,3] : 1$ 
izTx[4,4] : 1$ 
izTx[1,4] : X2+x$ 
izTx[3,4] : Z2$ 
ixTt[1,1] : 1$ 
ixTt[2,2] : 1$ 
ixTt[3,3] : 1$ 
ixTt[4,4] : 1$ 
itTc[1,1] : 1$ 
itTc[2,2] : 1$ 
itTc[3,3] : 1$ 
itTc[4,4] : 1$ 
itTc[1,4] : X4$ 
itTc[3,4] : Z4$ 
ioTs[1,1] : 1$ 
ioTs[2,2] : 1$ 
ioTs[3,3] : 1$ 
ioTs[4,4] : 1$ 
ioTs[1,4] : X5$ 
ioTs[3,4] : Z5$ 
isTw[1,1] : 1$ 
isTw[2,2] : 1$ 
isTw[3,3] : 1$ 
isTw[4,4] : 1$ 
isTw[1,4] : xw$ 
isTw[3,4] : zw$ 
/* Initialize Error Components */ 
eoTz[1,1] : 1$ 
eoTz[1,2] : -ezz$ 
eoTz[1,3] : eyz$ 
eoTz[1,4] : dxz + ap*dz$ 
eoTz[2,1] : ezz$ 
eoTz[2,2] : 1$ 
eoTz[2,3] : -exz$ 
eoTz[2,4] : dyz$ 
eoTz[3,1] : -eyz$ 
eoTz[3,2] : exz$ 
eoTz[3,3] : 1$ 
eoTz[3,4] : dzz$ 
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eoTz[4,4] : 1$ 
ezTx[1,1] : 1$ 
ezTx[1,2] : -ezx$ 
ezTx[1,3] : eyx$ 
ezTx[1,4] : dxx$ 
ezTx[2,1] : ezx$ 
ezTx[2,2] : 1$ 
ezTx[2,3] : -exx$ 
ezTx[2,4] : dyx$ 
ezTx[3,1] : -eyx$ 
ezTx[3,2] : exx$ 
ezTx[3,3] : 1$ 
ezTx[3,4] : dzx + ao*dx$ 
ezTx[4,4] : 1$ 
exTt[1,1] : 1$ 
exTt[1,2] : -ezt$ 
exTt[1,3] : eyt$ 
exTt[1,4] : dxt$ 
exTt[2,1] : ezt$ 
exTt[2,2] : 1$ 
exTt[2,3] : -ext$ 
exTt[2,4] : dyt$ 
exTt[3,1] : -eyt$ 
exTt[3,2] : ext$ 
exTt[3,3] : 1$ 
exTt[3,4] : dzt$ 
exTt[4,4] : 1$ 
etTc[1,1] : 1$ 
etTc[1,4] : dxc$ 
etTc[2,2] : 1$ 
etTc[2,4] : dyc$ 
etTc[3,3] : 1$ 
etTc[3,4] : dzc$ 
etTc[4,4] : 1$ 
eoTs[1,1] : 1$ 
eoTs[1,3] : eys$ 
eoTs[1,4] : dxs$ 
eoTs[2,2] : 1$ 
eoTs[2,3] : -exs$ 
eoTs[2,4] : dys$ 
eoTs[3,1] : -eys$ 
eoTs[3,2] : exs$ 
eoTs[3,3] : 1$ 
eoTs[3,4] : dzs$ 
eoTs[4,4] : 1$ 
esTw[1,1] : 1$ 
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esTw[1,4] : dxw$ 
esTw[2,2] : 1$ 
esTw[2,4] : dyw$ 
esTw[3,3] : 1$ 
esTw[3,4] : dzw$ 
esTw[4,4] : 1$ 
/* Generate Matrices */ 
mioTz : genmatrix(ioTz,4)$ 
mizTx : genmatrix(izTx,4)$ 
mixTt : genmatrix(ixTt,4)$ 
mitTc : genmatrix(itTc,4)$ 
mioTs : genmatrix(ioTs,4)$ 
misTw : genmatrix(isTw,4)$ 
meoTz : genmatrix(eoTz,4)$ 
mezTx : genmatrix(ezTx,4)$ 
mexTt : genmatrix(exTt,4)$ 
metTc : genmatrix(etTc,4)$ 
meoTs : genmatrix(eoTs,4)$ 
mesTw : genmatrix(esTw,4)$ 
oTz : mioTz.meoTz$ 
zTx : mizTx.mezTx$ 
xTt : mixTt.mexTt$ 
tTc : mitTc.metTc$ 
oTs : mioTs.meoTs$ 
sTw : misTw.mesTw$ 
/* Compute Full Error Matrix */ 
E : (sTw^^-1).(oTs^^-1).oTz.zTx.xTt.tTc$ 
/* Zero variables not measured */ 
ezz:0$ 
exz:0$ 
dyz:0$ 
ezx:0$ 
exx:0$ 
dyx:0$ 
ezt:0$ 
eyt:0$ 
dxt:0$ 
ext:0$ 
dyt:0$ 
dzt:0$ 
dxc:0$ 
dyc:0$ 
dzc:0$ 
eys:0$ 
dxs:0$ 
exs:0$ 
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dys:0$ 
dxw:0$ 
dyw:0$ 
dzw:0$ 
xw:X1+X2+X4+x-X5$ 
zw:Z1+Z2+Z4+z-Z5$ 
/* Evaluate E again */ 
for i:1 thru 4 do 
 for j:1 thru 4 do 
  E[i,j] : ev(E[i,j])$ 
/* Get the linearized displacement errors */ 
for i:1 thru 3 do 
 Err[i] : taylor(E[i,4],list,0,1); 
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APPENDIX B 
 
This appendix lists the calibration coefficients for the original geometric-thermal model 
as well as t arc 
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he adjusted coefficients.  Since the angular error equations are calibrated in 
e coefficients are scaled to radians.  Furthermore, straightness errors are 
in micrometers, and are converted to millimeters.  All of the other componen

ions are calibrated in millimeters.  Temperatures are in degrees Celsius.  This 
of units is only given in order to interpret the coefficients given below.  The 
scribed in this report are not dependent on these specific units. 

B.1 Error Model Calibration Coefficients 
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tered on the turning center portrayed in Figure 1.  The coeff
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nt the coefficient values of the component error functions given in 
al motion in the negative x and positive z direction.  These coefficients 
ring an earlier characterization of the turning center (see [26-27]).  

ssumed to be 3000 revolutions per minute. 

                                      X Yaw 
 

 
 
 

A11 A12 A13
 
 
 

Z Yaw 
 
 

-1.339000E-04 5.289925E-02 -3.490320E-01 
 
 
 

A21 A22 A23

1.811200E-05 8.326300E-04 -6.450000E-01 
 
 

X Straightness with Z Motion 
 
 
 A31 A32 A33 A34

2000E-05 3.09 1.007243E+01 

 
 
 

1716E-02 -4.283536E-01 
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X Displacement 
 
 
 
 
 
 
 
 
 

Z Displacement 
 
 
 
 
 
 
 
 

                                                Z Straightness of X Motion 
 
 
 
 
 
 
 
 

X Ax

A41 A42 A43 A44 A45

3.362300E-07 2.466100E-04 -2.828000E-06 1.700000E-04 -1.808700E-03 

A51 A52 A53 A54

-1.521630E-08 3.270300E-05 1.231370E-03 -3.586880E-02 

A61 A62 A63 A64

5.097300E-05 -1.594320E-02 6.321090E-03 2.711352E-01 

A71

-1.02000

 

Spindle Drift 
 
 

 
 
 
 
 

A72 A73 A74

0E-04 1.206751E-02 -3.894400E-03 -1.292980E-01 
 
is Squareness with respect to the Spindle Axis 

 

 
 
 
 
 

A81 A82

-1.354370E+00 1.031200E+01 
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Parallelism of Z Axis with respect to the Spindle Axis 

 
 
 
 
 
 
 
 

Machine Yaw 
 
 
 
 
 
 
 

 
 

B.2 Error Model Adjusted Coefficients 
 
 
This appendix lists the updated coefficients . ijA
  
                                                                  X Yaw 

 
 
 
 
 
 
 

Z Yaw 
 
 
 
 
 
 
 

X Straightness with Z Motion 
 
 
 
 

A91 A92 A93 A94

-7.416000E-01 3.410200E+01 4.710000E-02 -3.934200E+02 

A10,1 A10,2

-5.113500E+00 1.146000E+02 

A11 A12 A13

-1.5941621E-02 -6.5335550 -8.1679140E+02 

A21 A22 A23

1.8534552E-03 5.8945116E-01 1.8865618E+02 

A31 A32 A33 A34

3.0374870E-04 -1.4928799E-01 -3.2036746 -5.6535790E+01 
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X Displacement 
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Z Displacement 
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A62 A63 A64

55965E-01 -2.7085232 -8.1174190E+01 

A72 A73 A74

87646E-02 -3.5329871E-04 -4.7854670E-02 

A81 A82

56114E-01 4.0332133E+01



 
 
 
 
 

Parallelism of Z Axis with respect to the Spindle Axis 
 
 
 
 
 
 
 
 

Machine Yaw 
 
 
 
 
 
 
 

A91 A92 A93 A94

-7.6842435E-01 3.3485040E+01 -4.9867230E-01 -4.0761008E+02 

A10,1 A10,2

1.4453392 2.7857098E+02
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APPENDIX C: Adjusting for Tool Offsets 
 
All points on a part are usually specified in terms of part coordinate system points 
 

).,( pp xz  (C.1) 
 
Therefore the part origin must be determined relative to the machine coordinate system. 
This offset will be designated as: 
 

),( offoff XZ . (C.2) 
 
and is decomposed into two separate offsets. The first offset, , is the 
offset from the machine coordinate system to a point on the turret, called the tool locating 
point, to which tool inserts in the turret are referenced.  The second offset, , 
is the Z and X values of the tool point length from the tool locating point.  Thus, 
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The conversion of a part coordinate to an absolute coordinate is then given by 
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APPENDIX D: Determining the Machine Tool Errors from Part 
Measurements 
 
Although equation (18) associates the x and z residual machine errors at a general point 
with the perturbation terms , this equation cannot directly be used to estimate the 
perturbations.  The x and z residual errors at a set of sample points on several parts must 
be determined.  These residual errors are usually obtained by inspecting parts on a CMM. 

ijd

 
Assume that the machining is done in, say, the positive z and negative x direction.  This 
is the standard cutting direction used during this study.  The significance of this 
assumption lies in the selection of the characterization equation coefficients given in 
Appendix B.1.  Let there be n inspection points on the surface of a part.  One needs to 
take n > 17, since there are 35 unknown perturbation terms and two coordinates per 
inspected point.  Designate these nominal inspection points as 
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n
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n

nomnom xzxz  (D1) 
 
Suppose on a CMM these points are inspected and the CMM returns the following 
coordinates, where the superscript p means inspected, 
 

),(,),,( 11
p
n

p
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pp xzxz  (D2) 
 
 
Suppose that the process errors can be identified at n inspection points on the surface of 
the part using process-intermittent probing methods as described in [17].  If these errors 
are defined as dimensional discrepancies normal to the surface, then the errors must be 
decomposed into x and z components at each of the inspection points.  Thus we suppose 
that we have measured process error component pairs 
 

),(,),,( ,,
1

,
1
,

n
PIx

n
PIzPIxPIz EEEE  (D3) 

 
Next, we convert the inspection points, assumed given in part coordinates to absolute 
coordinates by computing using equation (C4).  
 
For the absolute coordinates (C4) the predicted z and x errors are computed from 
equation (2), using the coefficients from Appendix B1.  Once this has been done we have 
n predicted machine error pairs 
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The residual errors are then computed at the inspection points as 
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The subscript meas indicates that these errors are measured errors on the CMM and the 
subscript PI indicates that these errors are the process-intermittent errors measured on the 
part while it is on the machine tool. 
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APPENDIX E: Numerical Aspects of Pseudo Inversion 
 
Equation (26) is in general an overdetermined system in that there are more rows than 
columns or more known parameter coefficients than unknown parameters.  Ordinary 
inversion of J is not possible.  A reasonable approach to obtaining a “solution” to (26) is 
to employ a least squares procedure.  If the columns of J are linearly independent then 
this can usually be done by fairly standard least squares software.  However, if some of 
the columns are dependent then other procedures must be applied.  It is for that reason we 
introduce the idea of a pseudo inverse that will be described below. 
 
In order to “solve” (26) for the unknown vector U  we need to examine some issues 
involved with the least-squares solution of equation (26).  A numerical difficulty arises if 
there are nonzero vector solutions u of 
 
 

0=Ju   (E1) 
 
There are an infinite number of solutions of (E1) since any multiple of a solution is also a 
solution.  Thus if  is a solution of (26) and u  is a solution of (41) then, for any 
constant c , the vector  is a solution of (26) since 

1U
cuU +1 111 )( JUcJuJUcuUJ =+=+ . 

The problem then is to select from the infinite number of solutions one particular “good” 
solution. 
 
To analyze the difficulty we need to introduce some terminology from matrix theory.  
The matrix  is a transformation of vectors of length 35 to vectors of length 2n.  The 
vectors of length 35 will be called the domain vectors and the vectors of length 2n will be 
called the range vectors.  The range of  is a linear vector space in that the sum of two 
elements in the range is also in the range as well as a scalar multiple of an element in the 
range since  and 

J

J

)( 2121 uuJJuJu +=+ )(cuJcJu = .  The matrix  can also be written 
in the following form 
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( )3521 ,,, JJJJ =  (E2) 

 
where  for , are the columns of the matrix.  Each of these columns can also 
be thought of as a 2n-length vector.  If u  is a vector of length 35 with scalar elements  
for , then we can write, using (E2),  
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This shows that the range of the matrix is the set of linear combinations of the columns 
of , thought of as vectors.  A subset of the column vectors  for 

J
J ,iJ 35,,1=i , is said 

to be linearly independent if 
 

0
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=∑
=
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j
ij j
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implies that  for , where ,0=ju kj ,,1= 35≤k .  This says that the k vectors (or 
columns) form a set of coordinate vectors for the range space and that k is the dimension 
of the range space.  The number  is called the column rank of the matrix .  If  is 35 
then the matrix is said to be of full rank.  The null space of the matrix  is the set of all 
vectors  that satisfy   This set is also a vector space.  Its dimension, also called 
its nullity, is the largest set of linearly independent vectors that satisfy  A 
fundamental result in matrix theory is that the sum of the rank and the nullity of a matrix 
is the dimension of the domain space.  

k J k
J

u .0=Ju
.0=Ju

 
In order to determine a least-squares solution of equation (26) some measure of the 
difference between the right and left-hand sides of (26) must be defined.  The usual 
measure or metric used extends the idea of Euclidean distance to, in this case, vectors of 
length 2n, where n is the number of probed points on the workpiece.  We will denote the 
length or norm of a 2n-vector by 
 

∑
=

=
n

i
ivv

2

1
. (E5) 

 
The least-squares problem associate with equation (26) is to find the 2n-vector that 
minimizes the norm of the difference between the right and left-hand sides of (26).  This 
is symbolically written as 
 

vJu
u

−min   (E6) 

 
where v  is a right-hand side vector for (26).  From linear regression analysis the solution 
of (E6) depends on solving the system 
 

vJJuJ TT =  (E7) 
 
where the superscript T represents the transpose of the matrix.  There are two cases to 
consider: (1)  and (2) 35)( =Jrank .35)( <= kJrank  If the rank of J is 35, then the rank 
of  is 35 and it is a square matrix.  Therefore  has an inverse and (E7) is 
uniquely solvable.  This is the traditional least-squares solution of (E6).  However, if 

, then the rank of  is k (< 35), which means that the nullity of  
is nonzero and (E7) has an infinite number of solutions or an infinite number of vectors 

JJ T JJ T

35)( <= kJrank JJ T JJ T
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that satisfy (E6).  The object then is to select an appropriate solution for (38) and 
therefore ultimately for (26). 
 
A significant method for decomposing matrices, such as J, is called the Singular Value 
Decomposition and is strongly related to the eigenvalue-eigenvector decomposition of 

.  The singular value decomposition of the 2n by 35 matrix J  of rank k is given by JJ T

 
TODWJ =  (E8) 

 
where O, a 2n by 2n matrix and W, a 35 by 35 matrix, are orthogonal, which means they 
satisfy 
 

IWWWW
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TT

TT

==

==
 (E9) 

 
and D is a 2n by 35 diagonal matrix with nonnegative diagonal elements arranged to be 
nonincreasing from upper left to lower right. Some of them in the lower right can be 0. 
The relation to the matrix  is given by JJ T

 
TTT DWWDJJ =  (E10) 

 
which is not hard to show by multiplying the transpose of (E8) times (E8) and using (E9). 
This shows that the singular values of J are the positive square roots of the eigenvalues of 

.  JJ T

 
The singular value decomposition of J can be used to solve the least-squares 
minimization problem (E6) by using the following result (See [24]).  
 
Suppose that J is decomposed, using the singular value decomposition to the form (E10) 
where the matrix D can be written in the block form 
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where the submatrix 11  is a diagonal D kk ×  matrix with the nonnegative diagonal 
elements, containing the singular values, arranged to be nonincreasing from upper left to 
lower right.  Introduce two new variables g and y by  
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where  are vectors of length k,  the rank of ,  is a vector of length 2n-k and 
 is a vector of length 35-k.  Note that at this point, since u is unknown, y is unknown. 

Now let 

11 , yg 11D 2g

2y

1
~y  be the unique solution of the matrix equation 

 
1111 gyD =  (E13) 

 
Then the first conclusion is that all solutions of the minimization problem (E6) are of the 
form 
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where  is an arbitrary vector of length 35-k.  Next, any vector of the form (E14) 
generates the same residual vector r given by 

2y
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This says also that the vector of the difference between any two vectors of the form (E14) 
lies in the null space of J.  Therefore any two vectors of the form (E14) differ by a vector 
in the null space of J.  The norm of r satisfies 2gJuvr =−=  and, finally, the unique 
solution of the minimization problem (38) with the minimum length is given by 
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The fact that (E16) is the unique solution of minimum length of (E6) permits the 
definition of a concept of generalized inverse of the matrix J even though it is not a 
square matrix.  In particular the following result also holds.  If the matrix J is written in 
the form of its singular value decomposition (E8) where the diagonal matrix D is written 
in the block form (E11) then the unique minimum length solution of the minimization 
problem (E6) can also be written as 
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by combining (E12), (E13) and (E16). Now define 
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The matrix  is called the generalized inverse of J. +J
 
Although the matrix  has all of its diagonal elements nonzero so that it has the form 11D
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care must be taken when the inverse is computed numerically.  Theoretically the inverse 

of  has elements of the form 11D ,,,1,1 ki
di

=  but the values of  may be sufficiently 

small so that their reciprocals are numerically meaningless.  Thus, when the generalized 
inverse of a matrix is computed the diagonal matrix of singular values  is usually 
redefined to be the matrix that contains only the singular values whose absolute values 
are larger than some tolerance.  All others are set to zero, so that from a numerical point 
of view the rank of  may be less than k.  A tolerance that is used often in determining 
those singular values that are to be eliminated is given by 

id

11D

11D

 
εJntol 2=  (E20) 

 
where the norm of a matrix is computed in a similar manner to the norm of a vector in 
that the square root of the sum of the squares of all of the elements is taken as the norm 
and ε  is called the machine epsilon and is that positive finite machine precision number 
that satisfies 11 =+ ε .  For an ordinary PC using double precision the number is 
approximately 2.2E-16. 
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